Year 6 PROMPT sheet

Place value in numbers to 10million

The position of the digit gives its size

1	Ten millions
2	Millions
%	Hundred thousands
4	Ten thousands
15	thousands
6	hundreds
7	tens
8	units

Example

The value of the digit '1' is 10 000 000
The value of the digit '2' is 2 000 000
The value of the digit '3' is 300 000
The value of the digit '4' is 40 000

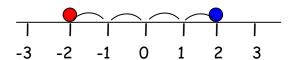
Round whole numbers

Example 1- Round 342 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 2

4 or less? YES - leave 'round off digit' unchanged - Replace following digits with zeros

ANSWER - 340 000


Example 2- Round 345 679 to the nearest 10 000

- Step 1 Find the 'round-off digit' 4
- Step 2 Move one digit to the right 5

5 or more? YES - add one to 'round off digit'
- Replace following digits with zeros

ANSWER - 350 000

Negative numbers

$$2 \rightarrow -2 \longrightarrow$$
 We say 2 is bigger than -2

$$-2 < 2 \longrightarrow$$
 We say -2 is less than 2

The difference between 2 and -2 = 4 (see line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- 8 + 2 is the same as 8 2 = 6
- 8 + 2 is the same as 8 2 = 6
- 8 2 is the same as 8 + 2 = 10

Multiply numbers & estimate to check

Use estimates to check calculations

152 x 34 ≈150 x 30 ≈4500

≈ is the symbol for 'roughly equals'

Subtraction

• Line up the digits in the correct columns

e.g.
$$645 - 427$$
 H T U 6^{3} /4 1 5 $\frac{4 \ 2 \ 7}{2 \ 1 \ 8}$ -

Divide numbers & estimate to check

With a remainder also expressed as a fraction

e.g.
$$4928 \div 32$$

$$\begin{array}{r}
028\\
15)432\\
-30\\
\hline
132\\
-120\\
\hline
12
\end{array}$$
ANSWER - $432 \div 15 = 28 \text{ r } 12$

$$= 28\frac{12}{15}$$

With a remainder expressed as a decimal

6/3 Use estimates to check calculations

432 ÷ 15 ≈ 450 ÷ 15 ≈ 30

Order of operations

Bracket
Indices
Divide
Multiply
Add
Subtract

Do these in the order they appear

Do these in the order they appear

e.g.
$$3 + \frac{4 \times 6}{1} - 5 = 22$$

first

 $(2+1) \times 3 = 9$

First

Factors, multiples & primes

- <u>FACTORS</u> are what divides exactly into a number
- e.g. Factors of 12 are: Factors of 18 are:

1	12
2	6
3	4
3	4

<u> </u>	3 01	10
1	18	
2	9)
3	6	

The common factors of 12 & 18 are: 1, 2, 3, 6, The Highest Common Factor is: 6

PRIME NUMBERS have only TWO factors

e.g. Factors of 7 are:

Factors of 13 are

1 13

So 7 and 13 are both prime numbers

• MULTIPLES are the times table answers

e.g. Multiples of 5 are:
5 10 15 20 25

Multiples of 4 are:
4 8 12 16 20

The Lowest Common Multiple of 5 and 4 is: 20

Addition

• Line up the digits in the correct columns

Use a word formula

= 5h 15min

Example: -Time to cook a turkey
Cook for 45min per kg weight
Then a further 45min

For a 6kg turkey, <u>follow the formula</u>: 45min × 6 + 45min =270min + 45min =315min

Equivalent fractions

o To simplify a fraction

Example:
$$\frac{27}{36}$$

First find the highest common factor of the numerator and denominator - which is 9, then divide

$$\frac{27^{\div 9}}{36 \div 9} = \frac{3}{4}$$

To change fractions to the same denominator

Example:
$$\frac{3}{4}$$
 and $\frac{2}{3}$

Find the highest common multiple of the denominators - which is 12, then multiply:

$$\frac{3^{x3}}{4_{x3}} = \frac{9}{12}$$
 and $\frac{2^{x4}}{3^{x4}} = \frac{8}{12}$

Add & subtract fractions

Make the denominators the same

e.g.
$$\frac{1}{5} + \frac{7}{10}$$

= $\frac{2}{10} + \frac{7}{10}$
= $\frac{9}{10}$
e.g. $\frac{4}{5} - \frac{2}{3}$
= $\frac{12}{15} - \frac{10}{15}$
= $\frac{2}{15}$
Do not add denominators

Multiply fractions

$$\circ \quad \text{Write 5 as } \frac{5}{1}$$

o Multiply numerators & denominators

e.g.
$$5 \times \frac{2}{3}$$
 e.g. $\frac{4}{5} \times \frac{2}{3}$ $= \frac{5}{15} \times \frac{2}{3}$ $= \frac{10}{3} = 3\frac{1}{3}$

Divide fractions

- \circ Write 5 as $\frac{5}{1}$
- o Invert the fraction after ÷ sign
- Multiply numerators & denominators

e.g.
$$\frac{2}{3} \div 5$$

= $\frac{3}{2} \times \frac{1}{5}$
= $\frac{3}{10}$
e.g. $\frac{4}{5} \div \frac{2}{3}$
= $\frac{4}{5} \times \frac{3}{2}$
= $\frac{12}{10} = \mathbf{1} \cdot \frac{2}{10} = \mathbf{1} \cdot \frac{1}{5}$

Convert units of measure

METRIC

When converting measurements follow these rules:

- When converting from a larger unit to a smaller unit we multiply (x)
- When converting from a smaller unit to a larger unit we divide (÷)

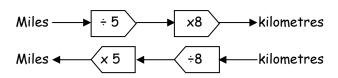
UNITS of LENGTH

10mm = 1cm 100cm = 1m 1000m = 1km

UNITS of MASS 1000g = 1kg

1000kg = 1tonne

UNITS of VOLUME 1000ml = 1 litre 100cl = 1litre


UNITS of TIME

60sec = 1 min 60min = 1 hour 24h = 1 day 365days = 1 year

Convert units of measure

METRIC/IMPERIAL

LEARN: 5 miles = 8km

Multiply/divide decimals by 10, 100

thousands	hundreds	tens	units	•	tenths	hundredths	thousandths
4	3	5	2	•	6	1	7

 To <u>multiply</u> by 10, move each digit one place to the <u>left</u>

e.g.
$$35.6 \times 10 = 356$$

Hundreds	Tens	Units	•	tenths
	_ 3	5	•	- 6
3 4	5 🖍	6 🖍	•	

• To <u>divide</u> by 10, move each digit one place to the <u>right</u>

Tens	Units	•	tenths	hundredths
3 <	5 \	•	6 _	
	3	•	1 5	6

- To multiply by 100, move each digit 2 places to the left
- To <u>divide</u> by 100, move each digit 2 places to the <u>right</u>
- To <u>multiply</u> by 1000, move each digit 3 places to the <u>left</u>
- To <u>divide</u> by 1000, move each digit 3 places to the <u>right</u>

AN ALTERNATE METHOD

Instead of moving the <u>digits</u>

Move the decimal point the opposite way

Multiply decimals

Step 1 - remove the decimal point Step 2 - multiply the two numbers

Step 3 - Put the decimal back in

Divide decimals

Use the bus stop method Keep the decimal point in the same place Add zeros for remainders

Fraction of quantity

•
$$\frac{4}{5}$$
 means ÷ 5×4

e.g. To find
$$\frac{4}{5}$$
 of £40
5
£40 ÷ 5 × 4 = £40

Percentage of quantity

Use only

o 50% -
$$\frac{1}{2}$$

$$\circ$$
 10% - $\frac{1}{10}$

$$\circ$$
 1% - $\frac{1}{100}$

Fraction, decimal, percentage equivalents

LEARN THESE:

$$\frac{1}{4}$$
 = 0.25 = 25%

$$\frac{1}{2}$$
 = 0.5 = 50%

$$\frac{3}{4}$$
 = 0.75 = 75%

$$\frac{1}{10}$$
 = 0.1 = 10%

• Percentage to decimal to fraction

$$27\% = 0.27 = \frac{27}{100}$$

$$7\% = 0.07 = \frac{7}{100}$$

70% = 0.7 =
$$\frac{70}{100}$$
 = $\frac{7}{10}$

• Decimal to percentage to fraction

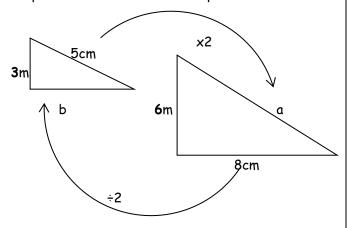
0.3 = 30% =
$$\frac{3}{10}$$

$$0.03 = 3\% = \frac{3}{100}$$

$$0.39 = 39\% = \frac{39}{100}$$

Fraction to decimal to percentage

$$\frac{4}{5} = \frac{80}{100} = 80\% = 0.8$$


Change to 100

$$\frac{0.375}{8} = 3 \div 8 = 8)3.30^{6}0^{4}0 = 0.375 = 37.5\%$$

$$\frac{9}{12} = \frac{3}{4} = 0.75 = 75\%$$

Similar shapes

When a shape is enlarged by a scale factor the two shapes are called SIMILAR shapes

Scale factor = known matching sides $6 \div 3 = 2$

Length $a = 5 \times 2 = 10$ cm

Length $b = 8 \div 2 = 4cm$

Unequal sharing

Example- unequal sharing of sweets

A gets

B gets

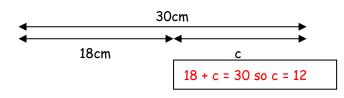
3 shares

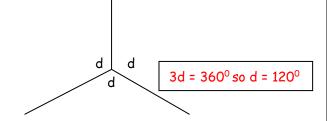
4 shares

=> 3 sweets ×4

4 sweets 3×4

Express missing numbers algebraically


An unknown number is given a letter



$$2a = 12 \text{ so } a = 6$$

$$b + 32 = 180 \text{ so } b = 148^{\circ}$$

Number sequences

• Understand position and term

Position	1 9	2	3	4
Term	3 ♥	7	11	15

Term to term rule = +4Position to term rule is $\times 4 - 1$ (because position $1 \times 4 - 1 = 3$) nth term = $n \times 4 - 1 = 4n - 1$

• Generate terms of a sequence

If the nth term is 5n + 1

 1^{st} term $(n=1) = 5 \times 1 + 1 = 6$

 2^{nd} term $(n=2) = 5 \times 2 + 1 = 11$

 3^{rd} term $(n=3) = 5 \times 3 + 1 = 16$

Possible solutions of a number sentence

Example: x and y are numbers

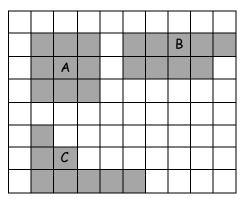
Rule: x + y = 5

Possible solutions: x = 0 and y = 5

x = 1 and y = 4

x = 2 and y = 3

x = 3 and y = 2

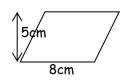

x = 4 and y = 1

x = 5 and y = 0

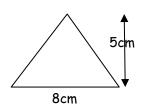
Perimeter and area of shapes

Shapes can have the SAME area but different perimeters

The area of each shape is 9 squares

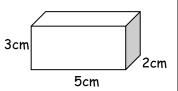


Perimeter of each shape is different A - 12; B - 14; C -16

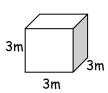

Area of parallelogram & triangle

Area of parallelogram

Area of parallelogram = b x h = 8 x 5 = <u>40cm²</u>


• Area of triangle $(\frac{1}{2}$ a parallelogram)

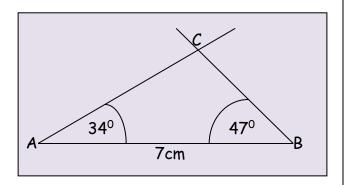
Volume


o Volume of cuboid

Volume = $1 \times w \times h$ = $5 \times 3 \times 2$ = 30cm^3

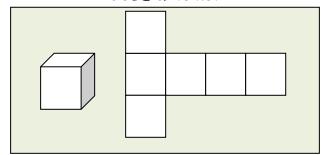
Volume of cube

Volume = $1 \times w \times h$ = $3 \times 3 \times 3$ = $27m^3$

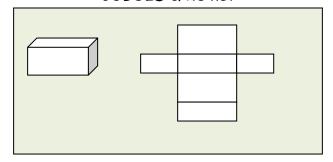


Construct 2D shapes

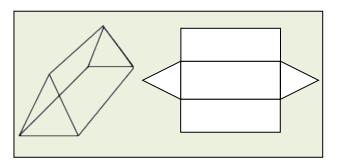
Example:


Triangle with side and angles given

- o Draw line AB = 7cm
- \circ Draw angle 34° at point A from line AB
- o Draw angle 47° at point B from line AB
- Extend to intersect the lines at C



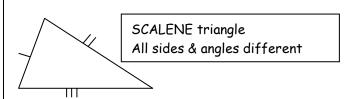
Construct 3D shapes

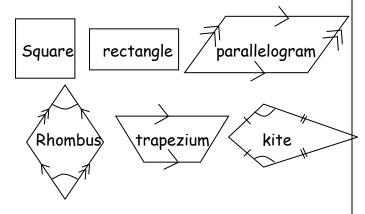

CUBE & its net

CUBOID & its net

TRIANGULAR PRISM & its net

Properties of shapes


TRIANGLES - sum of angles = 180°


ISOSCELES triangle 2 equal sides & 2 equal angles

EQUILATERAL triangle 3 equal sides & ALL angles 60°

QUADRILATERALS - sum of angles = 360°

REGULAR POLGONS - all sides the same

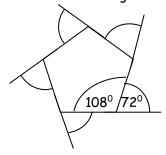
- Polygons have straight sides
- o Polygons are named by the number sides

3 sides - triangle

4 sides - quadrilateral

5 sides - pentagon

6 sides - hexagon

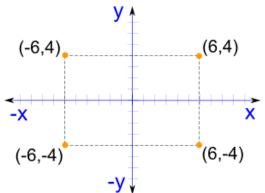

7 sides - heptagon

8 sides - octagon

9 sides - nonagon

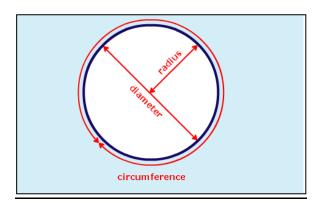
10 sides - decagon

 \circ Sum of exterior angles is always 360°

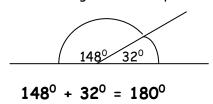


o interior & exterior angle add up to 180°

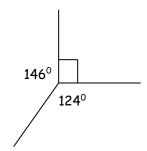
The interior angles add up to:


Triangle =1 \times 180° = 180° Quadrilateral =2 \times 180° = 360° Pentagon =3 \times 180° = 540° Hexagon =4 \times 180° = 720° etc

Position on a co-ordinate grid

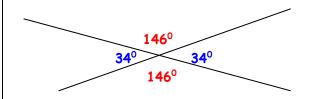

Parts of a circle

- The circumference is the distance all the way around a circle.
- The diameter is the distance right across the middle of the circle, passing through the centre.
- The radius is the distance halfway across the circle.
- The radius is always half the length of the diameter. (d = $2 \times r$) or (r = $\frac{1}{2} \times d$)



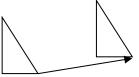
Angles and straight lines

Angles on a straight line add up to 180°



o Angles about a point add up to 360°

$$146^{\circ} + 90^{\circ} + 124^{\circ} = 360^{\circ}$$


Vertically opposite angles are equal

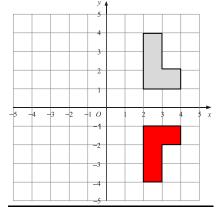
Transformations

Translation - A shape moved along a line

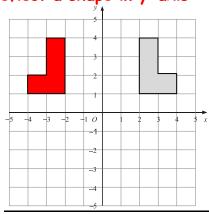
Right Down

Example - Move shape A 3 right & 4 down

Can also be written as a vector (3)


-4 -3 -2 -1 & 1 2 3 4 5 x

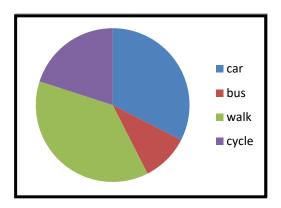
-2 -2 -3 B


Notice:

- o The new shape stays the same way up
- o The new shape is the same size

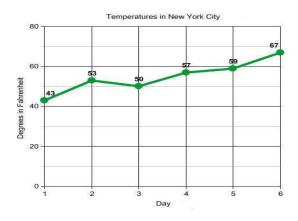
Reflect a shape in x-axis

Reflect a shape in y-axis

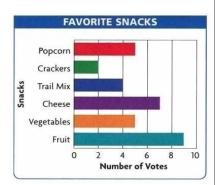


Graphs

o Pie chart


Transport	Frequency	Angle
Car	13	13 × 9=117°
Bus	4	4 × 9=36°
Walk	15	15 × 9=135
Cycle	8	8 × 9=72

Total frequency = 40 $360^{\circ} \div 40 = 9^{\circ}$ per person



o Line graph

Line graphs show changes in a single variable - in this graph changes in temperature can be observed.

Bar graph

Pictogram

Colour	Number of Smarties	Frequency
Green	0001	7
Orange		8
Blue		5
Pink		6
Yellow	00001	11
Red		8
Purple	0001	7
Brown		3
Ke	ey 🛑 = 2 smarties	

• Carroll diagram

	Has curved lines	Has straight lines
Has more than three sides		
Has three sides or fewer than three sides		

Venn diagram

The mean

The mean is usually known as the average.

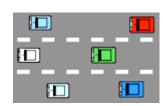
The mean is not a value from the original list.

It is a typical value of a set of data

Mean = total of measures ÷ no. of measures

e.g.- Find mean speed of 6 cars travelling on a road

Car 1 - 66mph


Car 2 - 57mph

Car 3 - 71mph

Car 4 - 54mph

Car 5 - 69mph

Car 6 - 58mph

Mean = 66+57+71+54+69+58

6

5

= <u>375</u> 6

= 62.5mph

Mean average speed was 62.5mph